

Giovedì 29 novembre 2018 - ore 9,00

Auditorium Domus Mercatorum - Camera di Commercio di Verona - Corso Porta Nuova, 96

CONVEGNO

La cimice asiatica e le produzioni agricole:

aggiornamenti sulla ricerca e sulla difesa

Alberto Pozzebon

Dinamiche di popolazione della cimice asiatica in agroecosistemi del Veneto

In collaborazione con:

La cimice asiatica Halyomorpha halys (Stål, 1855)

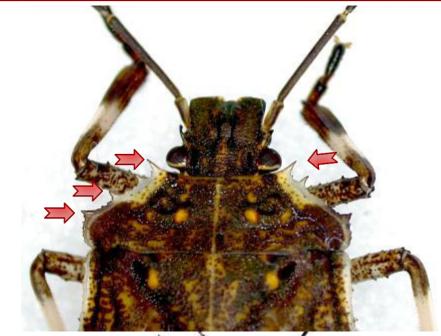
Pozzebon Alberto

Scaccini D., Tirello P., Fornasiero D., Duso C.

DAFNAE - Università degli Studi di Padova alberto.pozzebon@unipd.it

■ Le uova sono di forma ovale, biancastre, di circa 1 mm di diametro, deposte a gruppi di 25 – 28 elementi soprattutto sulla pagina inferiore delle foglie.

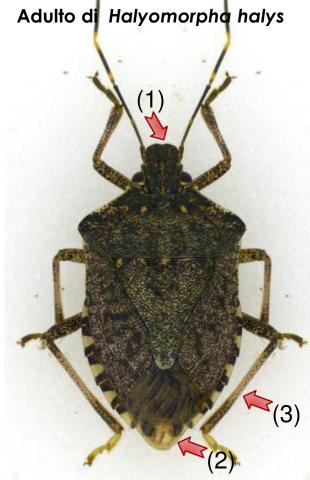
Le neanidi appena nate rimangono vicino all'ovatura. Con la successiva muta iniziano a disperdersi. Lo sviluppo da uova ad adulto avviene attraverso 5 stadi, 4 di neanide e 1 di ninfa (presenza degli abbozzi alari).

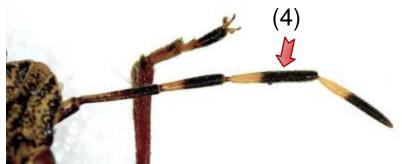


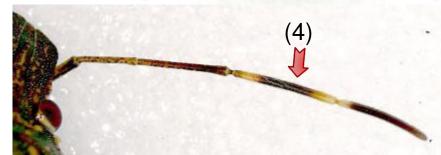
Gli stadi giovanili si distinguono da quelli di altre specie di cimici per la presenza di piccole spine a livello del torace, visibili dalla neanide di seconda età. Sono molto mobili e tendono a nascondersi o a lasciarsi cadere se disturbate.

Neanide di N. viridula

- Gli adulti sono lunghi circa 14–18 mm, hanno il tipico aspetto delle cimici (Pentatomidi) e una colorazione marmorizzata.
- Le zampe striate e la presenza di due bande bianche sul penultimo segmento antennale sono alcune delle caratteristiche utili a distinguere H. halys da altre specie di Pentatomidi.


Particolare delle zampe di *H. halys*





Alcuni caratteri per distinguere la cimice asiatica da altre specie simili (ad es. *R. nebulosa*) sono:

- 1. La forma del capo, «rettangolare» in *H. halys*, «triangolare» in *R. nebulosa*;
- 2. La colorazione dell'apice delle ali membranose, con venature scure (*H. halys*) o chiazze scure (*R. nebulosa*);
- 3. Colorazione delle zampe, striate in *H. halys*;
- 4. Colorazione del penultimo segmento antennale;

Neanidi e ninfe di H. halys su foglie di soia

Halyomorpha halys in Asia

- Origine: Cina, Taiwan, Corea, Giappone.
- Da 1 a 4 (6?) generazioni annuali.
- Fitofago secondario che può pullulare su melo, pero, pesco, susino, kaki, vite, soia, mais, ecc.

■ Nei territori di origine *H. halys* è limitata dall'attività di un complesso diversificato di **antagonisti naturali.**

Halyomorpha halys: specie invasiva

- Nord America: presente dalla metà degli anni '90
- Prima segnalazione di danni ai fruttiferi nel 2001; danni su mele per 37 milioni \$ (2010).
- 1-2 generazioni all'anno.
- Europa: segnalata in Svizzera e Liechtenstein nel 2004
- Segnalazioni successive: Germania e Grecia (2011), Francia e **Italia** (**2012**), Ungheria (2014), Romania, Serbia, Austria (2015) Russia, Georgia, Spagna (ca. 2016).
- Nei **Paesi centro-europei**: **monovoltina** e <u>no</u> danni in campo.

Halyomorpha halys in Italia

- Prime osservazioni in provincia di **Modena** (2012).
- Successive segnalazioni: Piemonte e Lombardia (2013),
 Veneto, Friuli-Venezia Giulia, Marche (2014), ecc.
- Elevata diversità genetica: introduzioni multiple dall'Asia e da altre nazioni europee, con possibili implicazioni per il controllo.
- Centro-nord Italia: 2 generazioni all'anno.

Dispersione

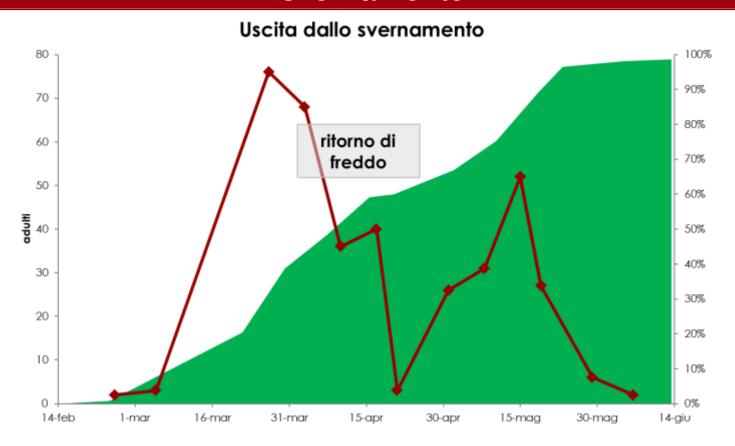
- Elevata capacità di dispersione, soprattutto per gli adulti:
- Adulti: distanze di volo di 5
 km in 24 h, con picchi di più di 100 km.
- Giovani, in campo
 (camminando): 5^a età
 sono le più mobili (20 m in 4 h).

Piante ospiti e danni

- Si alimenta su frutti, foglie, semi, fusto.
- Più di 170 piante ospiti per alimentazione e riproduzione (Leskey & Nielsen, 2018).
- Forte propensione alla dieta mista (maggiori dimensioni degli adulti):
 - Sviluppo completo su foglie di: pesco, ailanto, paulownia.
 - Non riesce a completare lo sviluppo sulle foglie di melo e catalpa.
- Le punture sui frutti causano la formazione di aree suberificate interne, vistose deformazioni, cascola dei frutticini. I sintomi aumentano in postraccolta.
- Soia: raggrinzimenti, deformazioni e aborto dei semi, riduzione della qualità e della quantità del raccolto, ritardo della maturazione.
- Altre colture son colpite, fra cui: mais, asparago, pomodori, peperoni, piante ornamentali,...

Fattori di limitazione

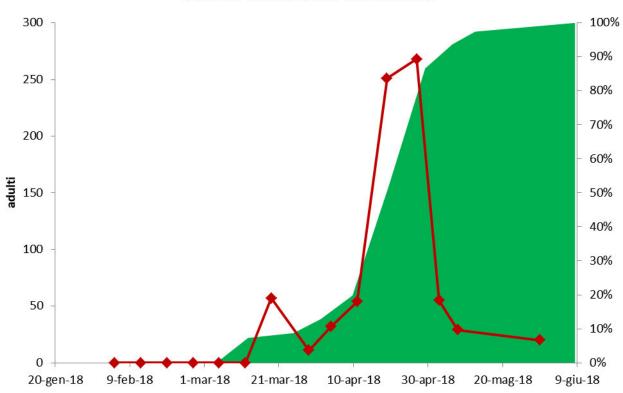
- Gli antagonisti naturali autoctoni sono attualmente poco efficaci.
- Specie autoctone considerate interessanti:
 - Anastatus bifasciatus
 - Trissolcus spp.
 - Ooencyrtus telenomicida


Haye et al. 2015; Roversi et al. 2016; Tavella et al., 2017

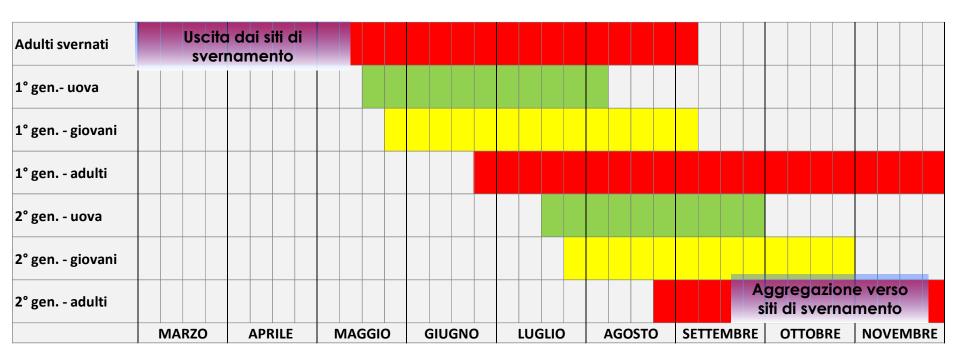
- Alcune specie asiatiche mostrano tassi di parassitizzazione elevati ma attualmente non possono essere introdotte.
- Specie considerate molto interessanti:
 - Trissolcus japonicus
 - Trissolcus cultratus

Attività di ricerca in Veneto

- Studio della fenologia e biologia di H. halys in Veneto: uscita dallo svernamento, fenologia in campo e numero di generazioni.
- 2. Dinamica spazio-temporale delle popolazioni di cimice asiatica in agroecosistemi frutticoli del Veneto.
- 3. Effetti dell'infestazione su alcune colture di interesse regionale: ciliegio, vite e actinidia.
- 4. Distribuzione in frutteto e possibilità di riduzione delle popolazioni.


Fenologia e biologia in Veneto 2017: uscita dallo svernamento

Mortalità invernale = 75 ± 2 %


Fenologia e biologia in Veneto 2018: uscita dallo svernamento

Mortalità invernale = 50 ± 3 %

Fenologia e ciclo di sviluppo in Veneto

Fenologia e ciclo di sviluppo in Veneto

- Lo svernamento di Halyomorpha halys avviene come adulto in edifici o in ripari naturali.
- In primavera lascia i siti di svernamento, progressivamente da marzo a maggio, per colonizzare le piante ospiti, dove si alimenta, si accoppia e ovidepone.
- Le femmine che escono dallo svernamento iniziano a ovideporre a partire da metà-fine maggio. Ciascuna può deporre oltre 250 uova, scalarmente, per un periodo di circa 3 mesi.

Fenologia e ciclo di sviluppo in Veneto

- Da metà fine luglio iniziano le ovideposizioni anche da parte delle femmine della prima generazione (circa 150 uova per femmina).
- Dal mese di agosto si ha la comparsa di adulti di seconda generazione, che non si riproducono ma sono destinati a svernare.
- Per la scalarità delle ovideposizioni i diversi stadi di sviluppo uova, neanidi, ninfe, adulti - sono presenti durante gran parte della stagione vegetativa.
- Gli adulti della seconda generazione e una parte degli adulti della prima generazione, andranno a svernare verso fine settembre - ottobre, spostandosi verso i ripari invernali dove tendono ad aggregarsi.

Parametri riproduttivi

■ da 2 a 15 ovature per femmina (>250 uova) (Haye et al., 2014; Costi et al., 2017)

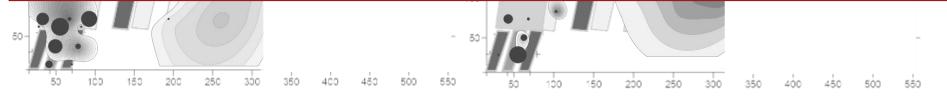
Dinamica spazio-temporale delle popolazioni in agroecosistemi frutticoli

1.4 - Ciliegio

Maggiore presenza di adulti svernati su piante con abbondanti fioriture (ad es., robinia) o con frutti in maturazione (ad es., ciliegio e gelso).

Nel proseguo della stagione maggiore presenza su: pero, nettarine, pesco, melo, soia, mais, sorgo e actinidia.

In seguito a trattamenti insetticidi specifici è stata osservata spesso una riduzione delle popolazioni seguita da ricolonizzazione delle colture.


26-mar 15-apr 5-mag 25-mag 14-giu 4-lug 24-lug 13-ago 2-set 22-set 12-ott 1-nov

Elevata capacità di dispersione a livello aziendale e forte effetto bordo su singolo appezzamento.

E' stata osservata una correlazione tra epoca di maturazione delle diverse colture e focolai di infestazione di H. halys.

Maggiori livelli d'infestazione e di danno ai margini degli appezzamenti.

- In Veneto la cimice asiatica copie due generazioni annuali in Veneto.
- La presenza dell'insetto è caratterizzata da una elevata mobilità e velocità di colonizzazione delle colture soprattutto quando queste si trovano nelle fasi più attrattive.
- La cimice rappresenta un importante fitofago soprattutto per le colture frutticole e le indagini svolte hanno evidenziato come questa rappresenti una seria minaccia per il ciliegio e per la produzione di kiwi.
- Approfondimenti sono necessari relativamente all'impatto sulla vite.
- La gestione del fitofago richiede un attento monitoraggio sulla presenza dell'insetto cercando di individuare le fasi di uscita dallo svernamento e colonizzazione delle colture.
- L'impiego di reti antigrandine associate a reti antinsetto può rappresentare uno strumento efficace per limitare l'impatto di questo insetto.

Monitoraggio delle popolazioni

■ Il monitoraggio è fondamentale per qualsiasi strategia razionale di difesa fitosanitaria. Sono disponibili trappole di diversa concezione innescate con feromoni di aggregazione.

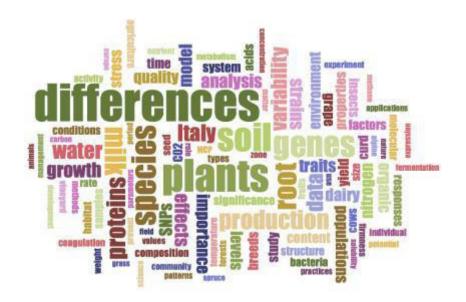
Indicazioni per il monitoraggio

Monitoraggio delle popolazioni mediante trappole innescate con feromoni di aggregazione:

- I feromoni di aggregazione sono attrattivi verso tutte le forme mobili dell'insetto
- Le trappole vanno installate ad inizio stagione
- È opportuno posizionare le trappole su piante potenzialmente attrattive per la cimice, situate entro 20/30 m da un edificio (soprattutto per le catture di inizio stagione).
- Non tutti gli insetti attratti verso la trappola sono catturati; una parte di questi potrebbe trovarsi sulla vegetazione circostante.
- Trappole poste al bordo di frutteti possono indurre un aumento del danno nell'area circostante.
- Se sono osservati cimici e danni, ma non sono registrate catture, può essere necessario spostare la trappola fino a trovare la corretta posizione.

Indicazioni per il monitoraggio

Monitoraggio delle popolazioni con controlli visivi delle piante:


- Si ottengono informazioni utili sul livello d'infestazione delle colture
- Si può individuare la presenza degli stadi di sviluppo della cimice sulle diverse parti della pianta.
- Durante i controlli visivi si tende a sottostimare la presenza dell'insetto sulle piante perché, se disturbato, tende a nascondersi.
- E' consigliato effettuare i controlli visivi nelle prime ore del mattino.

Indicazioni per il monitoraggio

Monitoraggio delle popolazioni mediante ombrello entomologico:

- L'ombrello entomologico (o un telo) va posizionato sotto la chioma degli alberi, scuotendo o battendo ripetutamente con un bastone le branche su cui si vuole valutare la presenza della cimice.
- Gli insetti si lasciano cadere e possono essere raccolti per il successivo conteggio.
- Questo tipo di campionamento sembra fornire dati più attendibili sul livello d'infestazione.
- Evitare le ore più calde della giornata in quanto è maggiore la propensione al volo degli adulti e risulta difficoltoso il loro conteggio.

Finanziamento per l'attuazione di progetti di sperimentazione fitosanitaria

Un sentito ringraziamento a tutte le aziende che hanno ospitato le prove.

